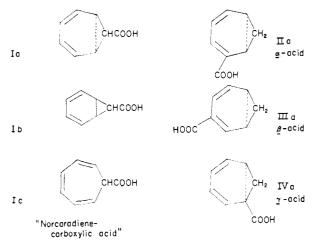
Vol. 78

cases, the formation of the cyclopropane ring is stereochemically specific, resulting exclusively from *cis* addition. Mechanistically the addition appears to occur in a single step withcut rotating intermediates.

cis-Butene is the only olefin found so far with which methylene reacts with discrimination. A possible explanation involving dipolar association prior to absorption of light and decomposition is being investigated.

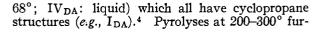
We acknowledge with thanks the support of a grant by the Research Corporation.

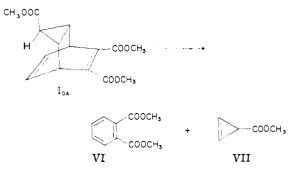

STERLING CHEMISTRY LABORATORY

YALE UNIVERSITY NEW HAVEN, CONN.	W. von E. Doering P. LaFlamme
_	

RECEIVED AUGUST 15, 1956

THE STRUCTURE OF THE BUCHNER ACIDS Sir:


To norcaradienecarboxylic acid (I, liquid), α -(II, m.p. 71.5°), β -(III, m.p. 59.5°), γ - (IV, m.p. 64.5°; amide, m.p. 85°) and the δ - (V, m.p. 31°) cycloheptatrienecarboxylic acids, the five C₈H₈O₂ acids uncovered in the laboratories of Buchner and Einhorn (see Grundmann and Ottmann¹ for references), Buchner *tentatively* assigned structures Ib, IVc,² IIc, IIIc and Ic, respectively; DeJong,⁸ structures Ib, IVc, IIIc, Ic and IIc; and Grundmann and Ottmann,¹ structures Ib, Ic, IIIc, IVc



and IIc. We wish to communicate evidence by which the " δ -acid" is removed and structures Ia, IIa, IIIa and IVa are assigned to the four remaining acids.

Since V and a 47:53 mixture (m.p. 31°) of II and III have superimposable infrared spectra and since α -amide (m.p. 127°) can be crystallized from " δ amide", " δ -acid" is non-existent.

The methyl esters $(I_{Me}, II_{Me}, III_{Me} \text{ and } IV_{Me})$ of the four remaining acids react with dimethyl acetylenedicarboxylate to give infrared-spectroscopically different, non-intercontaminated Diels-Alder adducts $(I_{DA}: m.p. 76^{\circ}; II_{DA}: \text{ liquid}; III_{DA}: m.p.$

nish dimethyl phthalate, trimethyl benzene-1,2,3tricarboxylate, trimethyl benzene-1,2,4-tricarboxylate and dimethyl phthalate, respectively: confirming structure I for "norcaradienecarboxylic acid," establishing structures II and III for α - and β -acids and being inconclusive about γ -acid.

In the aliphatic C-H region (displaced 27-30 milligauss [benzene 0.0], Varian Associates Nuclear Magnetic Resonance Spectrometer, 30 megacycles, 7047 gauss field strength) the NMR spectrum of I_{Me} shows one hydrogen atom split into a triplet by coupling with two equivalent, adjacent hydrogen atoms (in complete accord with structure I); II_{Me} and III_{Me} show two hydrogen atoms, likewise split into triplets (in accord with the assigned structures); IV_{Me} also shows two hydrogen atoms, which being split into a *doublet*, unequivocally implies coupling with *one* adjacent hydrogen atom. Consequently only structure IV is tenable for γ -acid.

The NMR spectra of the four methyl esters and of tropilidene are so similar and so uniquely complicated in the vinyl C-H region that one valencytautomeric system² must be common to all. In an important application of NMR, Corey, Burke and Remers⁵ have excluded type b (norcaradiene) as the structure for tropilidene. Similarly, none of the Buchner esters may have a type b structure. 1,3,5-Cycloöctatriene which necessarily has a non-planar, type c structure has only one simple NMR absorption in the vinyl C-H region and a resonance energy of 2 kcal.6 By contrast tropilidene has an exceptionally complicated NMR spectrum and a resonance energy of 6-8 kcal.⁶ It therefore seems highly probable that tropilidene and the Buchner acids have the planar, pseudoaromatic type a (tropilidene) structure.

HICKRILL CHEMICAL	W. von E. Doering
Research Foundation	G. Laber
Katonah, N. Y.	R. Vonderwahl
HUMBLE OIL AND REFINING CO.	N. F. CHAMBERLAIN
BAYTOWN, TEXAS	R. B. WILLIAMS

Received September 17, 1956

⁽¹⁾ Ch. Grundmann and G. Ottmann, Ann., 582, 163 (1953).

⁽²⁾ Three possible sets of valence tautomeric structures, illustrated by Ia, Ib and Ic, are designated by a, b and c.

⁽³⁾ A. W. K. DeJong, Rec. trav. chim., 56, 198 (1937).

⁽⁴⁾ K. Alder and G. Jacobs, *Ber.*, 1528 (1953), demonstrated this type of structure for the tropilidene-maleic anhydride adduct. In addition to VI, pyrolysis of I_{DA} gives VII (hydrogenated and saponified to cyclopropanecarboxylic acid and being investigated as a source of $C_8H_8^+$). Hexahydro II_{DA} and III_{DA} show C-CH₈.

⁽⁵⁾ E. J. Corey, H. J. Burke and W. A. Remers, THIS JOURNAL, 77, 4941 (1955).

⁽⁶⁾ Professor R. B. Turner, private communication.